HISTORY
A detailed history is the cornerstone of neurologic assessment. Although parents may be the primary informants, most children older than 3–4 yr can contribute to their history and should be questioned. The history should begin with the chief complaint and its significance in the context of normal development (see Chapters 20–26). The latter step is critical because a 13 mo old who cannot walk may be normal, whereas a 4 yr old who cannot walk might have a serious neurologic condition.

Next, the history of the present illness should provide a chronologic outline of the patient’s symptoms, with attention paid to location, quality, intensity, duration, associated features, and alleviating or exacerbating factors. It is essential to perform a review of systems, because abnormalities of the central nervous system (CNS) often manifest with vague, nonfocal symptoms that may be misattributed to other organ systems (e.g., vomiting, constipation, urinary incontinence). A detailed history might suggest that vomiting is as a result of increased intracranial pressure (ICP) rather than gastritis or that constipation and urinary incontinence are caused by a spinal cord tumor rather than behavioral stool withholding. In addition, a systemic illness may produce CNS manifestations, as do lupus erythematosus (seizures, psychosis, demyelination) or mitochondrial disorders (developmental delay, strokes, hypotonia).

Following the chief complaint and history of the present illness, the physician should obtain a complete birth history; paicularly if a congenital or perinatal disorder is suspected. The birth history should begin with a review of the pregnancy, including specific questions about common complications, such as pregnancy-induced hypertension, preeclampsia, gestational diabetes, vaginal bleeding, infections, and falls. It is important to quantify any cigarette, alcohol, or drug (prescription, herbal, illicit) use. Inquiring about fetal movement might provide clues to an underlying diagnosis, because decreased or absent fetal activity can be associated with chromosomal anomalies and CNS or r neuro muscular disorders. Finally, any abnormal ultrasound or amniocentesis results should be noted.

The mother’s labor history should address the gestational age at birth and mode of delivery (spontaneous vaginal, vacuum- or forceps-assisted, cesarean section) and should comment on the presence or absence of fetal distress. If delivery was by cesarean section, it is essential to record the indication for surgery.

The birth weight, length, and head circumference provide useful information about the duration of a given problem, as well as insights into the uterine environment. Parents can usually provide a reliable history of their child’s postnatal course; however, if the baby was resuscitated or had a complicated hospital stay, it is often helpful to obtain the hospital records. The physician should inquire about the infant’s general well-being, feeding and sleeping patterns, and activity level and the nature of the infant’s cry. If the infant had jaundice, it is important to determine both the degree of jaundice and how it was managed. Features of neurologic dysfunction at full term include inability to breathe spontaneously: poor, uncoordinated suck; or the need for an inordinate amount of time to feed or a requirement for gavage feeding.

Again, it is important to consider the developmental context, because all of these issues would be expected in premature infants, particularly those weighing 2.5 kg or less at birthweight. A double-checking the history of any unusual odors about the patient, screening results may provide a clue to abnormal neurologic manifestations in an infant.

A major component of the neurologic history is the developmental assessment (see Chapters 20–26 and 28). Careful evaluation of a child’s social, cognitive, language, fine motor skills, and gross motor skills is required to distinguish normal development from either an isolated or a global (i.e., in two or more domains) developmental delay. A static abnormality in development from birth suggests a congenital, intrauterine, or perinatal cause, but a loss of skills (regression) over time strongly suggests an underlying degenerative disorder. At the CNS, such as a n inborn error of metabolism. The ability of parents to recall the precise timing of their child’s developmental milestones is extremely variable. It is often helpful to request old photographs of the child or to review the baby book, where the milestones have been dutifully recorded. In general, parents are aware when their child has a developmental problem, and the physician should show appropriate concern.

Next, the family history must be reviewed. Most parents are cooperative in securing medical information about family members, particularly if it might have relevance for their child. The history should document the age and history of neurologic disease, including developmental delay, epilepsy, migraines, strabismus, and in the diet dis orders, for all first- and second-degree relatives. It is important to inquire directly about miscarriages or fetal deaths and to document the sex of the relevant embryo or fetus, as well as at the gestational age at the time of delivery. When available, the results of postmortem examinations should be obtained, because they can have a direct bearing on the patient’s condition. The parents should be questioned about their ethnic backgrounds, because some genetic disorders occur more commonly within specific populations (e.g., Tay-Sachs disease in the Ashkenazi Jewish population). They should also be asked if there is any chance that they could be related to each other, because the incidence of metabolic and degenerative disorders of the CNS is increased significantly in children of consanguineous marriages.

The social history should detail the child’s current living environment, as well as his or her relationship with their family members. It is important to inquire about recent stressors, such as divorce, remarriage, birth of a sibling, or death of a loved one, because they can affect the child’s behavior. If the child is in daycare or school, one should document the child’s academic and social performance, paying particular attention to any abrupt changes. Academic performance can be assessed by asking about the child’s recent report card, and peer relationships can be evaluated by having the child name his or her best friends. Any child who is unable to name at least two or three playmates might have abnormal social development. In some cases, discussions with the daycare worker or teacher provide useful ancillary data.

NEUROLOGIC EXAMINATION
The neurologic examination begins during the interview. Indirect observation of the child’s appearance and movements can yield valuable information about the presence of an underlying disorder. For instance, a child may be obvious that the child has dysmorphic facies, a un usual posture, or an abnormality of motor function manifested by a hemiparesis or gait disturbance. The child’s behavior while playing and interacting with his or her parents may also be telling. A normal child usually plays independently early in the visit but then engages in the interview process. A child with attention deficit/hyperactivity disorder might display impulsive behavior in the examining room, and a child with neurologic impairment might exhibit complete lack of awareness of the environment. Finally, note should be made of any unusual odors about the patient.
because some metabolic disorders produce characteristic scents (e.g., the musty smell of phenylketonuria or the sweaty feet smell of isovaleric acidemia). If such an odor is present, it is important to determine whether it is persistent or transient, occurring only with illnesses.

The examination should be conducted in a nonthreatening, child-friendly setting. The child should be allowed to sit where the child is most comfortable, whether it be on a parent’s lap or on the floor of the examination room. The physician should approach the child slowly, reserving any invasive, painful, or discomforting tests for the end of the examination (e.g., measurement of head circumference, gag reflex). In the end, the more that the examination seems like a game, the more the child will cooperate. Because the neurologic examination of an infant requires a somewhat modified approach from that of an older child, these two groups are considered separately (see Chapters 21, 22, and 113 vs Chapters 23–26).

Mental State

Age aside, the neurologic examination should include an assessment of the patient’s mental state in terms of both the level of arousal and the interaction with the environment. Premature infants born at < 28 wk of gestation do not have consistent periods of alertness, whereas slightly older infants arouse from deep sleep with gentle physical stimulation. Sleep–wake patterns are well developed at term. Because the level of alertness of a neonate depends on many factors, including the time of the last feeding, room temperature, and gestational age, serial examinations are critical when evaluating for changes in neurologic function. An older child’s mental state can be assessed by watching the child play. Having the child tell a story, draw a picture, or complete a puzzle can also be helpful in assessing cognitive function. Memory can be evaluated informally as parents recount their personal information, as well as more formally by asking them to register and recall three objects or perform a digit span.

Head

Correct measurement of the head circumference is important. It should be performed at every visit for patients younger than 3 yr and should be recorded on a suitable head growth chart. To measure, a nondistensible plastic measuring tape is placed over the mid-forehead and extended circumferentially to include the most prominent portion of the occiput. The average head circumference of an average term infant measures 34–35 cm at birth, 44 cm at 6 mo, 47 cm at 2 wk, 0.75 cm in the 3rd wk, and 1.0 cm in the 4th wk and every week thereafter until the 40th wk of development. The head circumference of an average term infant measures 34–35 cm at birth, 44 cm at 6 mo, and 47 cm at 1 yr of age (see Chapters 21 and 22).

If the brain is not growing, the skull will not grow; therefore, a small head frequently reflects a small brain, or microcephaly. Microcephaly may develop in utero or postnatally and may, for example, be related to intrauterine infection or drug exposure or to perinatal or postnatal injury. Conversely, a large head may be associated with a large brain, or macrocephaly, which is most commonly familial but may be from a disturbance of growth, neucutaneous disorder (e.g., neurofibromatosis), chromosomal defect (e.g., Klinefelter syndrome), or storage disorder. Alternatively, the head size may be increased secondary to hydrocephalus (Fig. 608.1) or chronic subdural hematomas. In the latter case, the skull tends to assume a square or box-like shape, because the long-standing presence of fluid in the subdural space causes enlargement of the middle fossa.

The shape of the head should be documented carefully. Plagiocephaly, or flattening of the skull, can be seen in some infants but may be particularly prominent in hypotonic or weak infants, who are less mobile. A variety of abnormal head shapes can be seen when cranial sutures fuse prematurely, as in the various forms of inherited craniosynostosis (see Chapter 609.12).

An infant has two fontanels at birth: a diamond-shaped anterior fontanel at the junction of the frontal and parietal bones that is open at birth, and a triangular posterior fontanel at the junction of the parietal and occipital bones that can admit the tip of a finger or may be closed at birth. If the posterior fontanel is open at birth, it should close over the ensuing 6–8 wk; its persistence suggests underlying hydrocephalus or congenital hypothyroidism. The anterior fontanel varies greatly in size, but it usually measures approximately 2 × 2 cm. The average time of closure is 18 mo, but the fontanel can close normally as early as 9 mo. A very small or absent anterior fontanel at birth might indicate craniosynostosis or microcephaly, whereas a very large fontanel can signify a variety of problems. The fontanel is normally slightly depressed and pulsatile and is best evaluated by holding the infant upright while the infant is asleep or feeding. A bulging fontanel is a potential indicator of increased ICP, but vigorous crying can cause a protuberant fontanel in a normal infant.

Inspection of the head should include observation of the venous pattern, because increased ICP and thrombosis of the superior sagittal sinus can produce marked venous distention. Dysmorphic facial features can indicate a neurodevelopmental aberration. Likewise, cutaneous abnormalities, such as cutis aplasia or abnormal hair whorls, can suggest an underlying brain malformation or genetic disorder.

Table 608.1 Screening Scheme for Developmental Delay: Upper Range

<table>
<thead>
<tr>
<th>AGE (mo)</th>
<th>GROSS MOTOR</th>
<th>FINE MOTOR</th>
<th>SOCIAL SKILLS</th>
<th>LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Supports weight on forearms</td>
<td>Opens hands spontaneously</td>
<td>Smiles appropriately</td>
<td>Coos, laughs</td>
</tr>
<tr>
<td>6</td>
<td>Sits momentarily</td>
<td>Transfers objects</td>
<td>Shows likes and dislikes</td>
<td>Babbles</td>
</tr>
<tr>
<td>9</td>
<td>Pulls to stand</td>
<td>Pincer grasp</td>
<td>Plays pat-a-cake, peek-a-boo</td>
<td>Imitates sounds</td>
</tr>
<tr>
<td>12</td>
<td>Walks with 1 hand held</td>
<td>Releases an object on command</td>
<td>Comes when called</td>
<td>1-2 meaningful words</td>
</tr>
<tr>
<td>18</td>
<td>Walks upstairs with assistance</td>
<td>Feeds self from a spoon</td>
<td>Mimics actions of others</td>
<td>At least 6 words</td>
</tr>
<tr>
<td>24</td>
<td>Runs</td>
<td>Builds a tower of 6 blocks</td>
<td>Plays with others</td>
<td>2- to 3-word sentences</td>
</tr>
</tbody>
</table>

![Fig. 608.1 Congenital hydrocephalus. Note the enlarged cranium and prominent scalp veins.](image)
Anosmia, or loss of smell, most commonly occurs as a transient phenomenon in association with an upper respiratory tract infection or allergy. Permanent causes of anosmia include head trauma with damage to the olfactory nerve, intranasal drug use, congenital, in which case it can occur as an isolated deficit or as part of Kallmann syndrome, a familial disorder characterized by hypogonadotropic hypogonadism and congenital anosmia. Although not a routine component of the examination, smell can be tested reliably as early as the 32nd wk of gestation by presenting a stimulus and observing for an alerting response or withdrawal, or both. Care should be taken to use appropriate stimuli, such as coffee or peppermint, as opposed to strongly aromatic substances (e.g., ammonia inhalants) that stimulate the trigeminal nerve. Each nostril should be tested individually by pinching shut the opposite side.

Optic Nerve (Cranial Nerve II; see also Part XXVIII)

Assessment of the optic disc and retina (see Chapters 637, 648, and 649) is a critical component of the neurologic examination. Although the retina is best visualized by dilating the pupil, most physicians do not have ready access to mydriatic agents at the bedside; therefore, it may be necessary to consult an ophthalmologist in some cases. Mydriatics should not be administered to patients whose pupillary responses are being followed as a marker for impending cerebral herniation or to patients with glaucoma or cataracts. When mydriatics are used, both eyes should be dilated, because unilateral papillary fixation and dilation can cause confusion and sway in later examiners unaware of the pharmacologic intervention. Examination of an infant’s retina may be facilitated by providing a nipple or soother and by turning the head to one side. The physician gently strokes the patient to maintain arousal while examining the closer eye. An older child should be placed in the parent’s lap and should be distracted by bright objects or toys. The color of the optic nerve is salmon-pink in a child but may be gray-white in a newborn, particularly if the newborn has fair coloring. Palpation of the skull accompanied by molding can cause confusion and can lead to the improper diagnosis of optic atrophy.

Disc edema refers to swelling of the optic disc, and **papilledema** specifically refers to swelling that is secondary to increased ICP. Papilledema rarely occurs in infancy because the skull sutures can separate to accommodate the expanding brain. In older children, papilledema may be graded according to the Frisen scale (Fig. 608.2). Disc edema must be differentiated from **papillitis**, or inflammation of the optic disc. Dr. Deborah Friedman; D-F courtesy Flaum Eye Institute, University of Rochester.)

Fig. 608.2 Stages of papilledema (Frisen scale). A, Stage 0: Normal optic disc. B, Stage 1: Very early papilledema with obscuration of the nasal border of the disc only, without elevation of the disc borders. C, Stage 2: Early papilledema showing obscuration of all borders, elevation of the nasal border, and a complete peripapillary halo. D, Stage 3: Moderate papilledema with elevation of all borders, increased diameter of the optic nerve head, obscuration of vessels at the disc margin, and a peripapillary halo with finger-like extensions. E, Stage 4: Marked papilledema characterized by elevation of the entire nerve head and total obscuration a segment of a major blood vessel on the disc. F, Stage 5: Severe papilledema with obscuration of all vessels and obliteration of the optic cup. Note also the nerve fiber layer hemorrhages and macular exudate. (A-C courtesy Dr. Deborah Friedman; D-F courtesy Flaum Eye Institute, University of Rochester.)
nerve. Both conditions manifest with enlargement of the blind spot, but visual acuity and color vision tend to be spared in early papilledema in contrast to what occurs in optic neuritis.

Retinal hemorrhages occur in 30–40% of all full-term newborn infants. The hemorrhages are more common after vaginal delivery than after cesarean section and a nadir re no t ossociated wt h b irth in jury or wt h neurologic complications. They disappear spontaneously by 1-2 wk of age. The presence of retinal hemorrhages beyond the early neonatal period should raise a concern for nonaccidental trauma.

Vision
A full description of the age-appropriate evaluation of vision can be found in Chapter 637. Evaluation of vision in the premature infant presents unique challenges. At 28 wk of corrected gestational age, a premature infant blinks in response to a bright light, and at 32 wk, the infant maintains eye closure until the light source is removed. The pupil reacts to light by 29–32 wk of corrected gestational age; however, the pupillary response is often difficult to evaluate, because premature infants resist eye opening and have poorly pigmented irises. A normal 37-wk infant turns the head and eyes toward a source of light, and a term infant is able to fix on and follow a target, such as the examiner’s face.

Oculomotor (Cranial Nerve III), Trochlear (Cranial Nerve IV), and Abducens (Cranial Nerve VI) Nerves
The globe is moved by six extraocular muscles, which are innervated by the oculomotor, trochlear, and abducens nerves. These muscles and nerves can be assessed by having the patient follow an interesting toy or the examiner’s finger in the six cardinal directions of gaze. The physician observes the range and nature (conjugate vs disconjugate, smooth vs choppy or saccadic) of the eye movements, particularly noting the presence and direction of any abnormal eye movements. Premature infants older than 25 wk of gestational age and comatose patients can be evaluated using the oculocephalic (doll’s eye) maneuver, in which the patient’s head is quickly rotated to evoke reflex eye movements. If the brainstem is intact, rotating the patient’s head to the right causes the eyes to move to the left and vice versa. Similarly, rapid flexion and extension of the head elicits vertical eye movement.

Disconjugate gaze can result from extraocular muscle weakness; cranial nerve (CN) III, IV, or VI palsies; or brainstem lesions that disrupt the medial longitudinal fasciculus. Infants who are younger than 2 mo can have a slightly disconjugate gaze at rest, with one eye horizontally displaced from the other by 1 or 2 mm (strabismus). Vertical displacement of the eyes requires investigation because it can indicate trochlear nerve (CN IV) palsy or skew deviation (supranuclear ocular malalignment that is often associated with lesions of the posterior fossa). Strabismus is discussed further in Chapter 641.

The oculomotor nerve innervates the superior, inferior, and medial recti, as well as the inferior oblique and levator palpebrae superioris muscles. Complete paralysis of f the oculomotor nerve ca use may result from paresis, dilation of the pupil, displacement of the eye outward and downward, and impairment of adduction and elevation. The trochlear nerve supplies the superior oblique muscle, which depresses and adducts the eye in horizontal gaze and is mediated by the medial longitudinal fasciculus (MLF). Displacement of the eyes to the affected side, which is unusual in the setting of neuroblastoma or viral infection.

In addition to gaze palsies, the examiner might encounter a variety of adventitious movements. Nystagmus is an involuntary, rapid movement of the eye that may be subclassified as being pendular, in which the two phases have equal amplitude and velocity, or jerk, in which there is a fast and a slow phase. Jerk nystagmus can be further characterized by the direction of its fast phase, which may be left-, right-, up-, or down-beating; rotatory; or mixed. Many patients have a few beats of nystagmus with extreme lateral gaze (end-gaze nystagmus), which is of no clinical consequence. P athologic horizontal nystagmus usually has an associated structural abnormality of the brainstem and cerebellum.

Ocular bobbing is characterized by a slow drift back to primary position and is associated with pontine lesions. Ophthalmoplegic cramps are typically seen in voluntary, chaotic, conjugate deviations of the eyes, which are often seen in the setting of neuroblastoma or viral infection.

Trigeminal Nerve (Cranial Nerve V)
The three divisions of f the trigeminal nerve—ophthalmic, maxillary, and mandibular—convey information about the face. Pain, temperature, and other sensations (touch, pressure, proprioception) are conveyed via the ophthalmic and maxillary divisions. Facial motor function is conveyed via the mandibular division.

Facial Nerve (Cranial Nerve VII)
The facial nerve is a p a motor nerve that innervates the muscles of facial expression, the buccinator, platysma, stapedius, and stylohyoid muscles; the posterior belly of the digastric muscle. It also has a separate division, called the chorda tympani, that conveys taste, parasympathetic fibers, and fibers to the submandibular glands. The facial nerve palsy may be congenital, idiopathic (Bell palsy), or secondary to trauma or demyelination (Gell-Ullian-Barré syndrome). Facial nerve lesions that are proximal to the junction with the chorda tympani will result in an inability to taste substances with the anterior two thirds of the tongue. If necessary, taste can be tested by placing a solution of sodium or glucose on one side of the extended tongue. Normal children can identify the test substance in < 10 sec. Other findings that may be associated with facial nerve palsy include hyperacusis, resulting from stapedius muscle involvement, and impaired tearing.

Vestibulocochlear Nerve (Cranial Nerve VIII)
The vestibulocochlear nerve has two components within a single trunk: the vestibular nerve, which innervates the semicircular canals of the inner ear and is involved with equilibrium, coordination, and orientation, and the cochlear nerve, which transmits auditory information to the brainstem.
in space, and the cochlear nerve, which innervates the cochlea and subserves hearing.

Dysfunction of the vestibular system results in vertigo, the sensation of environmental motion. On exa mination, pa tients with v ertibul ar nerve dysfunction typically have nystagmus, in which the fast component is directed away from the affected nerve. With their arms outstretched and eyes closed, their limbs tend to drift toward the injured side. Likewise, if they march in p lace, they slowly pivot toward the lesion (Fukuda stepping test). On Romberg and tandem gait testing, they tend to fall toward the abnormal ear. Vestibular function can be further evaluated with calor ic testing. Before testing, the tympanic membrane should be visualized to ensure that it is intact and unobstructed. In an obtunded or comatose patient, 30-50 mL of ice water is then delivered by syringe into the external auditory canal with the patient's head elevated 30 degrees. If the brainstem is intact, the eyes deviate toward the irritated side. A much smaller quantity of ice wa ter (2 mL) is us ed in a k, alert patients to avoid inducing nausea. In normal subjects, introduction of ice wa ter produces e y e di ve iot i o n toward the stimulated ear by rhythm followed by nystagmus with the fast component away from the stimulated labyrinth.

Because he a ring is in te gral to no rmal la nguage de ve lopment, the physician should i nd i re ctly a bout he a ring pr oblems. P arents' concern is often a reliable indicator of hearing impairment and warrants a formal audiological assessment with either audiometry or brainstem auditory evoked potential testing (see Chapter 655). Even in the absence of parents' concern, certain children warrant formal testing within the first month of life, including those with a family history of early-life or syndromic deafness or a personal history of prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital anomalies or prematurity, severe asphyxia, exposure to ototoxic drugs, hyperbilirubinemia, congenital anomalies of the head or neck, bacterial meningitis, and congenital

Accessory Nerve (Cranial Nerve XI)

The access ory ner ve inner,vates the st ernocleidomastoid (SCM) and trapezius muscles. The left SCM acts to turn the head to the right side and vice versa; acting together, the SCMs flex the neck. The trapezius acts to elevate the shoulder. Lesions to the a ccessory nerve result in atrophy and can paralyze o f the ipsilateral SCM a nd trapezius muscles, with r esultant dep ression of the shoulder. Because s everal cer vical muscles are involved in n head rotation, unilateral SCM paresis might not b e evident unless t he p atient is ask ed to rotate the ha d aga inst resistance. Skull base fractures or lesions, motor neuron disease, myotonic dystrophy, and nystagmus in the head or neck, bacterial meningitis, and congenital anomalies in the region of the foramen magnum are the principal causes of hypoglossal nerve dysfunction.

Hypoglossal Nerve (Cranial Nerve XII)

The hypoglossal nerve innervates the tongue. Examination of the tongue includes assessment of its bulk and strength, as well as observation for adventitious movements. M alfunction of the hypoglossal nerve or other facial muscles produces atrophy, weakness, and fasciculations of the tongue. If the injury is unilateral, the tongue deviates toward the side of the injury; if it is bilateral, tongue protrusion is not possible and the patient can have difficulty swallowing (dysphagia). Werdnig-Hoffmann disease (infantile spinal muscular atrophy, or spinal muscular atrophy type 1) and congenital anomalies in the region of the foramen magnum are the principal causes of hypoglossal nerve dysfunction.

Motor Examination

The motor examination includes assessment of muscle bulk, tone, and strength, as well as observation for involuntary movements that might indicate central or peripheral nervous system pathology.

Bulk

Decreased muscle bulk (atrophy) may be secondary to disease of the lower motor neuron, nerve root, peripheral nerve, or muscle. In most cases, neurogenic atrophy is more severe than myogenic atrophy. Increased muscle bulk (hypertrophy) is usually physiologic (e.g., body builders). Pseudohypertrophy refers to muscle tissue that has been replaced by fat and connective tissue, giving it a bulky appearance with a paradoxical reduction in strength, as in Duchenne muscular dystrophy.

Tone

Muscle tone, which is generated by an unconscious, continuous, partial contraction of muscle, creates resistance to passive movement of a joint. Tone varies greatly based on a patient's age and state. At 28 wk of gestation, all four extremities are extended and there is little resistance to passive movement. Flexor or tonic tone is visible in the lower extremities at 32 wk and is palpable in the upper extremities at 36 wk; a normal term infant's posture is characterized by flexion of all extremities.

There are three key tests for assessing postural tone in neonates: the traction response, vertical suspension, and horizontal suspension (Fig. 608.3; see Chapters 113 and 120). To evaluate the traction response, the physician grasps the infant's hands and gently pulls the infant to a sitting position. Normally, the infant naturally extends and supports the body's weight with both hands. With horizontal suspension, the physician holds the infant prone by placing a hand under the infant's abdomen. The head should rise and the limbs should flex, but a hypotonic infant will draper over the physician's hand, forming a U shape. Assessing tone in the extremities is accomplished by observing the infant's remaining movements.
position and passively manipulating the infant’s limbs. When the upper extremity of a normal term infant is pulled gently across the chest, the elbow does not quite reach the mid-sternal (scarf sign), whereas the elbow o f a hypotonic infant extends beyond the midline with the case. Measurement of the popliteal angle is a useful method for documenting tone in the lower extremities. The examiner flexes the hip and extends the knee. Normal term infants allow extension of the knee to approximately 80 degrees. Similarly, tone can be evaluated by flexing the hip and knee to 90 degrees and then internally rotating the leg, in which case the heel should not pass the umbilicus.

Abnormalities of f t one include spasticity, rigidity, and hypotonia. (Paratonia, which is rarely seen in children, is a form of clasp-knife phenomenon. Because spasticity results from upper motor neuron dysfunction, it disproportionately affects the upper-extremity flexors and lower-extremity extensors and tends to occur in conjunction with disuse atrophy; hyperactive deep tendon reflexes, and extensor plantar reflexes (Babinski sign). In infants, spasticity of the f t he lower extremities results in a scooting of the feet upon vertical suspension. Older children may also have their hands climb up their legs when asked to rise from a prone position, a maneuver called Gowers sign (Fig. 608.5).

Involuntary Movements

Patients with lower motor neuron or peripheral nervous system lesions might have fasciculations, which are small, involuntary muscle contractions that result from the spontaneous discharge of a single motor unit and create the illusion of a bag of worms under the skin. Because most infants have abundant body fat, muscle fasciculations are best observed in the tongue in this age group.

Most other involuntary movements, including tics, dystonia, chorea, and athetosis, stem from disorders of the basal ganglia. Tremor seems to be an exception, as it is thought to be mediated by cerebellotegmental pathways. Further detail on the individual movement disorders is provided in Chapter 615.

Sensory Examination

The sensory examination is difficult to perform on an infant or uncooperative child and has a relatively low yield in terms of the information that it provides. A gross assessment of sensory function can be achieved by distracting the patient with an interesting toy and then touching the patient with a cotton swab in different locations. Normal infants and children indicate an awareness of the stimulus by crying, withdrawing the extremity, or pausing briefly; however, with repeated testing, they lose interest in the stimulus and begin to ignore the examiner. It is critical, therefore, that any areas of concern are tested efficiently and, if necessary, reexamined at an appropriate time.
abdominal, anal wink, and cremasteric reflexes. Decreased anal sphincter tone and strength and absence of the superficial withdrawal. Other signs of spinal cord injury include touch above the level can evoke a squirming movement or perspiration, with the skin cool and dry below the level of injury. Sensory discrimination, extinction to double simultaneous stimulation. A notable exception is when the physician suspects a spinal cord lesion in an infant or young child and needs to identify a sensory level. In such situations, observation might suggest a difference in color, temperature, or perspiration, with the skin cool and dry below the level of injury. Lightly touching the skin above the level can evoke a squirming movement or physical withdrawal. Other signs of spinal cord injury include decreased anal sphincter tone and strength and absence of the superficial abdominal, anal wink, and cremasteric reflexes.

Reflexes

Deep Tendon Reflexes and the Plantar Response
Deep tendon reflexes are readily elicited in most infants and children. In infants, it is important to position the head in the midline when assessing reflexes, because turning the head to one side can alter reflex tone. Reflexes are graded from 0 (absent) to 4+ (markedly hyperactive), with 2+ being normal. Reflexes that are 1+ or 3+ can be normal as long as they are symmetric. Sustained clonus is always pathologic, but infants younger than 3 mo old can have 1-2 beats of clonus, and older children can have 1-2 beats of clonus, provided that it is symmetric.

The ankle jerk is easiest to elicit, but it can usually be obtained by passively dorsiflexing the foot and then tapping on either the Achilles tendon or the ball of the foot. The knee jerk is evoked by tapping the patellar tendon. If this reflex is exaggerated, extension of the knee may be accompanied by contraction of the contralateral adductors (crossed adductor response). Hypoactive reflexes generally reflect lower motor neuron or cerebellar dysfunction, whereas hyperactive reflexes are consistent with upper motor neuron disease, although acute upper motor neuron injury can result in hyperactive or absent deep tendon reflexes. The plantar response is obtained by stimulation of the lateral aspect of the sole of the foot, beginning at the heel and extending to the base of the toes. The Babinski sign, indicating an upper motor neuron lesion, is characterized by extension of the great toe and fanning of the remaining toes. Too vigorous stimulation may produce withdrawal, which may be misinterpreted as a Babinski sign. Plantar responses have limited diagnostic utility in neonates, because they are mediated by several competing reflexes and can be either flexor or extensor, depending on how the foot is positioned. Asymmetry of the reflexes or plantar response is a useful lateralizing sign in infants and children.

Primitive Reflexes
Primitive reflexes appear and disappear at specific times during development (Table 608.2), and their absence or persistence beyond those times signifies CNS dysfunction. Although many primitive reflexes have been described, the Moro, grasp, tonic neck, and parachute reflexes are the most clinically relevant. The Moro reflex is elicited by supporting the infant in a semirecumbent position and then allowing the infant's head to fall backward onto the examiner's hand. A normal response consists of symmetric extension and abduction of the fingers and upper extremities, followed by flexion of the upper extremities and an audible cry. An asymmetric response can signify a fractured clavicle, brachial plexus injury, or hemiparesis. Absence of the Moro reflex in a term newborn is ominous, suggesting significant dysfunction of the CNS. The grasp

![Fig. 608.5 A-D, Gowers sign in a boy with hip girdle weakness because of Duchenne muscular dystrophy. When asked to rise from a prone position, the patient uses his hands to walk up his legs to compensate for proximal lower extremity weakness.](image)
response is elicited by placing a finger in the open palm of each hand; by 37 wk of gestation, the reflex is strong enough that the examiner can lift the infant from the bed with gentle traction. The tonic neck reflex is produced by manually rotating the infant's head to one side and observing for the characteristic fencing posture (extension of the arm on the side to which the face is rotated and flexion of the contralateral arm). An obligatory tonic neck response, in which the infant becomes stuck in the fencing posture, is always abnormal and implies a CNS disorder.

The parachute reflex, which occurs in slightly older infants, can be evoked by holding the infant's trunk and then suddenly lowering the infant as if he or she were falling. The arms will spontaneously extend to break the infant's fall, making this reflex a prerequisite to walking.

Coordination

Ataxia refers to a disturbance in the smooth performance of voluntary motor acts and is usually the result of cerebellar dysfunction. Lesions to the cerebellar vermis result in unsteadiness while sitting or standing (truncal ataxia). Affected patients might have a wide-based gait or may be unable to perform tandem gait or fast alternate heel and shin tapping. Lesions to the cerebral hemispheres cause appendicular ataxia, which may be apparent as the patient reaches for objects and performs finger-to-nose and heel-to-shin movements. Other features of cerebellar dysfunction include errors in judging dist ance (dysmetria), inability to inhibit a muscular action (rebound), im paired p erformance of a n arm movement, and decreased deep tendon reflexes. Acute ataxia suggests an infectious or postinfectious, endocrinologic, toxic, traumatic, vascular, or psychogenic process, and chronic symptoms suggest a met atabolic, neoplastic, or degenerative process.

Station and Gait

Observation of a child's station and gait is an important aspect of the neurologic examination. Normal children can stand with their feet close together while swaying; however, children who are unsteady may sway or even fall. On gait testing, the heels should strike either side of an imaginary line, but children with poor balance tend to walk with their legs farther apart to create a more stable base. Tandem gait testing refers to a disturbance in the smooth performance of voluntary rapid alternating movements.

There are a variety of abnormal gait, many of which are associated with a specific underlying etiology. Patients with spastic gait appear stiff-legged like a soldier. They may walk on tiptoe as a result of tightness or contractures of the Achilles tendons, and their legs may cross as they walk. A hemiparetic gait is associated with spasticity and circumduction of the leg, as well as decreased arm swing. Sensory ataxia results in a wide-based steppage gait, in which the patient lifts the legs up higher than usual in the swing phase and then slaps the foot down. Myopathic, or waddling, gait is associated with hip girdle weakness. Affected children often develop a co-contraction of the iliopsoas and hamstrings, producing a gait pattern characterized by a wide-based, externally rotated gait. An ataxic gait occurs in children with cerebellar atrophy or degenerative disorders of the cerebellum.

SPECIAL DIAGNOSTIC PROCEDURES

Lumbar Puncture and Cerebrospinal Fluid Examination

Examination of the cerebrospinal fluid (CSF) and measurement of the pressure it creates in the subarachnoid space are essential in confirming the diagnosis of meningitis, encephalitis (autoimmune, infectious), and idiopathic intracranial hypertension (previously referred to as pseudo-tumor cerebri), and it is often helpful in assessing subarachnoid hemorrhage; demyelinating, degenerative, and collagen vascular diseases; and intracranial neoplasms. Having an experienced assistant who can position, restrain, and comfort the patient is critical to the success of the procedure.

The patient should be situated in a lateral decubitus or seated position with the neck and legs flexed to enlarge the intervertebral spaces. As a rule, sick neonates should be maintained in a seated position to prevent problems with ventilation and perfusion. Rega rdles s of the position chosen, it is imp ortant to make sure that the patient's shoulders and hips are straight to prevent rotating the spine.

Once the patient is situated, the physician identifies the appropriate interspace by drawing an imaginary line from the iliac crest downward perpendicular to the vertebral column. In adults, lumbar punctures are usually performed in the L3-L4 or L4-L5 interspaces. Next, the physician dons a mask, gown, and sterile gloves. The skin is thoroughly prepared with a cleansing agent, and sterile drapes are applied. The skin and underlying tissues are anesthetized by injecting a local anesthetic (e.g., 1% lidocaine) at the time of the procedure or by applying a eutectic mixture of lidocaine and prilocaine (EMLA) to the skin 30 min before the procedure. A 22-gauge, 1.5- to 3.0-inch, sharp, beveled spinal needle with a properly fitting stylet is introduced in the midsagittal plane and directed slightly cephalad. The physician should pause frequently, remove the stylet, and assess for CSF flow. Although a pop can occur as the needle penetrates the dura, it is more common to experience a subtle change in resistance.

Once CSF has been detected, a manometer and 3-way stopcock can be attached to the spinal needle to obtain an opening pressure. If the patient was s eated as t he sp inal needle was in troduced, t he pat ient should b e m oved ca ref ully t o a lateral decubitus position with the head and legs extended before the manometer is attached. In children between 1 and 18 yr of age, the reference range parameter for abnormally elevated opening pressure, determined as the 90th percentile for all patients in the reference population, is 28 cm of water. The threshold for an abnormal opening pressure in the pediatric population is 11.5 cm of water. The most common cause of an elevated opening pressure is an agitated patient. Sedation and a h igh b ody m a ss i ndex c an a lso increase the opening pressure (Chapter 623).

Contraindications

To perform a lumbar puncture include suspected mass lesion of the brain, especially in the posterior fossa or above the tentorium and causing shift of the midline; suspected mass lesion of the spinal cord; symptoms and signs of impending cerebral herniation in a child with probable meningitis; critical illness (on rare occasions); skin infection at the site of the lumbar puncture; and thrombocytopenia with a platelet count of less than 20 × 10^9/L. If optic disc edema or focal findings suggest a mass lesion, a rapid CT scan of the head should be obtained before proceeding with lumbar puncture to prevent uncal or cerebral herniation as the CSF is removed. In the absence of these findings, routine head imaging is not warranted. The physician should also be alert to clinical signs of impending herniation, including alterations in the respiratory pattern (e.g., hyperventilation, Cheyne-Stokes respirations, ataxic respirations, respiratory arrest), abnormalities of pupil size and reactivity, loss of contralateral flexion of the contralateral arm, and endocarditis (cerebral vasculitis). Neonates with congenital hypothyroidism can have as many as 15/mm^3. Polymorphonuclear cells are elevated in normal infants, but 1-2/mm^3 may be present in a normal neonate. An elevated polymorphonuclear count suggests bacterial meningitis or idiopathic intracranial hypertension (previously referred to as pseudotumor cerebri), and it is often helpful in assessing subarachnoid hemorrhage; demyelinating, degenerative, and collagen vascular diseases; and intracranial neoplasms. Having an experienced assistant who can position, restrain, and comfort the patient is critical to the success of the procedure.

The patient should be situated in a lateral decubitus or seated position with the neck and legs flexed to enlarge the intervertebral spaces. As a rule, sick neonates should be maintained in a seated position to prevent problems with ventilation and perfusion. Regard less of the position chosen, it is important to make sure that the patient’s shoulders and hips are straight to prevent rotating the spine.

Once the patient is situated, the physician identifies the appropriate interspace by drawing an imaginary line from the iliac crest downward perpendicular to the vertebral column. In adults, lumbar punctures are usually performed in the L3-L4 or L4-L5 interspaces. Next, the physician dons a mask, gown, and sterile gloves. The skin is thoroughly prepared with a cleansing agent, and sterile drapes are applied. The skin and underlying tissues are anesthetized by injecting a local anesthetic (e.g., 1% lidocaine) at the time of the procedure or by applying a eutectic mixture of lidocaine and prilocaine (EMLA) to the skin 30 min before the procedure. A 22-gauge, 1.5- to 3.0-inch, sharp, beveled spinal needle with a properly fitting stylet is introduced in the midsagittal plane and directed slightly cephalad. The physician should pause frequently, remove the stylet, and assess for CSF flow. Although a pop can occur as the needle penetrates the dura, it is more common to experience a subtle change in resistance.

Once CSF has been detected, a manometer and 3-way stopcock can be attached to the spinal needle to obtain an opening pressure. If the patient was seated as the spinal needle was introduced, the patient should be moved carefully to a lateral decubitus position with the head and legs extended before the manometer is attached. In children between 1 and 18 yr of age, the reference range parameter for abnormally elevated opening pressure, determined as the 90th percentile for all patients in the reference population, is 28 cm of water. The threshold for an abnormal opening pressure in the pediatric population is 11.5 cm of water. The most common cause of an elevated opening pressure is an agitated patient. Sedation and a high body mass index can also increase the opening pressure (Chapter 623).

Contraindications

To perform a lumbar puncture include suspected mass lesion of the brain, especially in the posterior fossa or above the tentorium and causing shift of the midline; suspected mass lesion of the spinal cord; symptoms and signs of impending cerebral herniation in a child with probable meningitis; critical illness (on rare occasions); skin infection at the site of the lumbar puncture; and thrombocytopenia with a platelet count of <20 × 10^9/L. If optic disc edema or focal findings suggest a mass lesion, a rapid CT scan of the head should be obtained before proceeding with lumbar puncture to prevent uncal or cerebral herniation as the CSF is removed. In the absence of these findings, routine head imaging is not warranted. The physician should also be alert to clinical signs of impending herniation, including alterations in the respiratory pattern (e.g., hyperventilation, Cheyne-Stokes respirations, ataxic respirations, respiratory arrest), abnormalities of pupil size and reactivity, loss of contralateral flexion of the contralateral arm, and endocarditis (cerebral vasculitis). Neonates with congenital hypothyroidism can have as many as 15/mm^3. Polymorphonuclear cells are elevated in normal infants, but 1-2/mm^3 may be present in a normal neonate. An elevated polymorphonuclear count suggests bacterial meningitis or
the early phase of aseptic meningitis (see Chapter 621). CSF lymphocytes are a normal reaction to the normal childhood range by 3 mo of age. The CSF protein may be elevated in many processes, including infectious, immunologic, vascular, and degenerative diseases; blockage of CSF flow; as well as tumors of the brain (primary CNS tumors, systemic tumors metastatic to the CNS, infiltrative acute lymphoblastic leukemia) and spinal cord. With a traumatic tap, the CSF protein is increased by approximately 1 mg/dL for every 1,000 red blood cells/mm³. Elevation of CSF immunoglobulin G, which normally produces low CSF glucose as well. The CSF glucose content is approximately 60% of the blood glucose in a healthy child. To prevent a spuriously elevated blood:CSF glucose ratio in a case of a subarachnoid hemo rhage, disorders involving the glucose transporter protein type 1 (e.g., GLUT1 deficiency), fungal meningitis, and, occasionally, aseptic meningitis can produce low CSF glucose as well. A Gram stain of the CSF is essential if there is a suspicion for bacterial meningitis. It is a rapid stain and is helpful in the interpretation of cultures or, with the addition of 3-dimensional reformatting, to assess for tuberculous and fungal meningitis, respectively. CSF is then plated on different culture media depending on the suspected pathogen. When indicated by the clinical presentation, it can also be helpful to assess for the presence of specific antigens or polymerase chain reaction studies (e.g., Neisseria meningitidis, Haemophilus influenzae type b, or Streptococcus pneumoniae) or to obtain antibody or polymerase chain reaction studies (e.g., herpes simplex virus-1 and -2, West Nile virus, Zika, enteroviruses). In noninfectious cases, levels of CSF metabolites, such as lactate, aminos acids, and N-acetyl aspartate, can provide clues to the underlying metabolic disease.

Neuroradiologic Procedures

Skull x-rays have limited diagnostic utility. They can na demost nstrate fractures, bony defects, intracranial calcifications, or indirect evidence of increased ICP. Acutely increased ICP causes separation of the sutures, whereas chronically incr eased ICP is associ ated with erosion of the posterior clinoid processes, enlargement of the sella turcica, and increased convolutional markings.

Crani al ultrasonography is the imaging method of choice for detecting intracranial hemorrhage, periventricular leukomalacia, and hydrocephalus in infants with patent anterior fontanelle. Ultrasound is less sensitive than either cranial CT scanning or MRI for detecting hypoxic–ischemic injury, but the use of color Doppler or power Doppler sonography, both of which show changes in regional cerebral blood flow velocity, improve its sensitivity. In general, ultrasound is not a useful technique in older children, although it can be helpful intraoperatively when placing shunts, locating small tumors, and performing needle biopsies.

Crani al CT angiography is a useful diagnostic tool in the evaluation of many neurologic emergencies, as well as some nonemergent conditions. It is a noninvasive, rapid procedure that can usually be performed without sedation. CT scans use conventional x-ray techniques, meaning that they produce ionizing radiation. Because children younger than 10 yr of age are several times more sensitive to radiation than adults, it is important to consider whether imaging is actually indicated and, if it is, whether an ultrasound or MRI might be the more appropriate study. In the emergency setting, a noncontrast CT scan can demonstrate skull fractures, pneumocephalus, intracranial hemorrhages, hydrocephalus, and impending herniation. If the noncontrast scan reveals an abnormality and an MRI cannot be performed in a timely fashion, nonionic contrast should be used to highli ght areas of breakdown in the blood–brain barrier (e.g., abscesses, tumors) and/or collections of abnormal blood vessels (e.g., arteriovenous malformations). CT is less useful for diagnosing acute infaracts in children, because radiographic changes might not be apparent for up to 24 hr. Some subtle signs of early (<24 hr) infarction include sulcal effacement, blurring of the gray–white junction, and the hyperdense middle cerebel lar artery sign (incr eased attenuation in the middle cerebral artery in the acute setting). If the diagnosis of multiple sclerosis; brain or spinal cord tumor; immunologic demyelinating diseases; brain or spinal cord. With a traumatic tap, the CSF protein is increased by approximately 1 mg/dL for every 1,000 red blood cells/mm³. Elevation of CSF immunoglobulin G, which normally produces low CSF glucose as well. The CSF glucose content is approximately 60% of the blood glucose in a healthy child. To prevent a spuriously elevated blood:CSF glucose ratio in a case of a subarachnoid hemo rhage, disorders involving the glucose transporter protein type 1 (e.g., GLUT1 deficiency), fungal meningitis, and, occasionally, aseptic meningitis can produce low CSF glucose as well. A Gram stain of the CSF is essential if there is a suspicion for bacterial meningitis. It is a rapid stain and is helpful in the interpretation of cultures or, with the addition of 3-dimensional reformatting, to assess for tuberculous and fungal meningitis, respectively. CSF is then plated on different culture media depending on the suspected pathogen. When indicated by the clinical presentation, it can also be helpful to assess for the presence of specific antigens or polymerase chain reaction studies (e.g., Neisseria meningitidis, Haemophilus influenzae type b, or Streptococcus pneumoniae) or to obtain antibody or polymerase chain reaction studies (e.g., herpes simplex virus-1 and -2, West Nile virus, Zika, enteroviruses). In noninfectious cases, levels of CSF metabolites, such as lactate, aminos acids, and N-acetyl aspartate, can provide clues to the underlying metabolic disease.

Neuroradiologic Procedures

Skull x-rays have limited diagnostic utility. They can na demost nstrate fractures, bony defects, intracranial calcifications, or indirect evidence of increased ICP. Acutely increased ICP causes separation of the sutures, whereas chronically incr eased ICP is associ ated with erosion of the posterior clinoid processes, enlargement of the sella turcica, and increased convolutional markings.

Crani al ultrasonography is the imaging method of choice for detecting intracranial hemorrhage, periventricular leukomalacia, and hydrocephalus in infants with patent anterior fontanelle. Ultrasound is less sensitive than either cranial CT scanning or MRI for detecting hypoxic–ischemic injury, but the use of color Doppler or power Doppler sonography, both of which show changes in regional cerebral blood flow velocity, improve its sensitivity. In general, ultrasound is not a useful technique in older children, although it can be helpful intraoperatively when placing shunts, locating small tumors, and performing needle biopsies.

Crani al CT angiography is a useful diagnostic tool in the evaluation of many neurologic emergencies, as well as some nonemergent conditions. It is a noninvasive, rapid procedure that can usually be performed without sedation. CT scans use conventional x-ray techniques, meaning that they produce ionizing radiation. Because children younger than 10 yr of age are several times more sensitive to radiation than adults, it is important to consider whether imaging is actually indicated and, if it is, whether an ultrasound or MRI might be the more appropriate study. In the emergency setting, a noncontrast CT scan can demonstrate skull fractures, pneumocephalus, intracranial hemorrhages, hydrocephalus, and impending herniation. If the noncontrast scan reveals an abnormality and an MRI cannot be performed in a timely fashion, nonionic contrast should be used to highlight areas of breakdown in the blood–brain barrier (e.g., abscesses, tumors) and/or collections of abnormal blood vessels (e.g., arteriovenous malformations). CT is less useful for diagnosing acute infaracts in children, because radiographic changes might not be apparent for up to 24 hr. Some subtle signs of early (<24 hr) infarction include sulcal effacement, blurring of the gray–white junction, and the hyperdense middle cerebellar artery sign (increased attenuation in the middle cerebral artery in the acute setting). If the diagnosis of multiple sclerosis; brain or spinal cord tumor; immunologic demyelinating diseases; brain or spinal cord. With a traumatic tap, the CSF protein is increased by approximately 1 mg/dL for every 1,000 red blood cells/mm³. Elevation of CSF immunoglobulin G, which normally produces low CSF glucose as well. The CSF glucose content is approximately 60% of the blood glucose in a healthy child. To prevent a spuriously elevated blood:CSF glucose ratio in a case of a subarachnoid hemo rhage, disorders involving the glucose transporter protein type 1 (e.g., GLUT1 deficiency), fungal meningitis, and, occasionally, aseptic meningitis can produce low CSF glucose as well. A Gram stain of the CSF is essential if there is a suspicion for bacterial meningitis. It is a rapid stain and is helpful in the interpretation of cultures or, with the addition of 3-dimensional reformatting, to assess for tuberculous and fungal meningitis, respectively. CSF is then plated on different culture media depending on the suspected pathogen. When indicated by the clinical presentation, it can also be helpful to assess for the presence of specific antigens or polymerase chain reaction studies (e.g., Neisseria meningitidis, Haemophilus influenzae type b, or Streptococcus pneumoniae) or to obtain antibody or polymerase chain reaction studies (e.g., herpes simplex virus-1 and -2, West Nile virus, Zika, enteroviruses). In noninfectious cases, levels of CSF metabolites, such as lactate, aminos acids, and N-acetyl aspartate, can provide clues to the underlying metabolic disease.
<table>
<thead>
<tr>
<th>Table 608.3</th>
<th>Preferred Imaging Procedures in Neurologic Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISCHEMIC INFARCTION OR TRANSIENT ISCHEMIC ATTACK</td>
<td>HEADACHE</td>
</tr>
<tr>
<td>CT/CTA (head and neck) + CT perfusion for patients who are unstable or are potential candidates for tissue plasminogen activator or other acute interventions</td>
<td>CT with and without contrast or MRI with and without gadolinium if a structural disorder is suspected (MRI is preferred in nonemergent situations because it does not involve ionizing radiation and provides a better view of the parenchyma)</td>
</tr>
<tr>
<td>Otherwise, MRI/MRA (head and neck) with and without gadolinium and with diffusion-weighted images</td>
<td>HEAD TRAUMA</td>
</tr>
<tr>
<td>If the examination findings localize to the anterior circulation, carotid ultrasound should be performed rather than neck CTA or MRA</td>
<td>CT without contrast initially</td>
</tr>
<tr>
<td>Obtain an MRV if the infarct does not follow an arterial distribution</td>
<td>MRI after initial assessment and treatment if clinically indicated</td>
</tr>
<tr>
<td>CT or MRI can detect infarcts more than 24 hr old, although MRI is generally preferred to avoid exposure to ionizing radiation</td>
<td>Diffusion tensor imaging and/or diffusion kurtosis sequences may be useful to detect subtle white matter abnormalities</td>
</tr>
<tr>
<td>INTRAPARENCHYMAL HEMORRHAGE</td>
<td>EPILEPSY</td>
</tr>
<tr>
<td>CT if < 24 hr, MRI if > 24 hr</td>
<td>MRI with and without gadolinium. Thin slices through the mesial temporal lobes may be helpful if a temporal focus is suspected</td>
</tr>
<tr>
<td>MRI and MRA to assess for underlying vascular malformation, tumor, etc.</td>
<td>PET</td>
</tr>
<tr>
<td>Catheter angiography if MRA is nondiagnostic</td>
<td>Intercostal SPECT</td>
</tr>
<tr>
<td>ARTERIOVENOUS MALFORMATION</td>
<td>BRAIN TUMOR</td>
</tr>
<tr>
<td>CT for acute hemorrhage; MRI and MRA with and without gadolinium as early as possible</td>
<td>MRI with and without gadolinium</td>
</tr>
<tr>
<td>Catheter angiography if noninvasive imaging is nondiagnostic</td>
<td>MRS</td>
</tr>
<tr>
<td>Catheter angiography if MRA is nondiagnostic</td>
<td>PET</td>
</tr>
<tr>
<td>CEREBRAL ANEURYSM</td>
<td>MULTIPLE SCLEROSIS</td>
</tr>
<tr>
<td>CT without contrast for acute subarachnoid hemorrhage</td>
<td>MRI with and without gadolinium</td>
</tr>
<tr>
<td>MRA or CTA to identify the aneurysm</td>
<td>Obtain sagittal FLAIR images</td>
</tr>
<tr>
<td>Catheter angiography may be necessary in some cases</td>
<td>MENINGITIS OR ENCEPHALITIS</td>
</tr>
<tr>
<td>TCD to detect vasospasm</td>
<td>CT without and with contrast before lumbar puncture if there are signs of increased ICP on examination</td>
</tr>
<tr>
<td>HYPOXIC–ISCHEMIC BRAIN INJURY</td>
<td>MRI with and without gadolinium after initial assessment and treatment for patients with complicated meningitis or encephalitis</td>
</tr>
<tr>
<td>Ultrasound in infants</td>
<td>BRAIN ABSCESS</td>
</tr>
<tr>
<td>If ultrasound is negative or there is a discrepancy between the clinical course and the sonogram, obtain an MRI</td>
<td>MRI with and without gadolinium</td>
</tr>
<tr>
<td>In older children, CT if unstable; otherwise, MRI</td>
<td>Diffusion-weighted images and MRS can help to differentiate abscess from necrotic tumor</td>
</tr>
<tr>
<td>MRS can show a lactate peak even in the absence of structural abnormalities and can be useful for prognostication purposes</td>
<td>If the patient is unstable, CT with and without contrast followed by MRI with and without contrast when feasible</td>
</tr>
<tr>
<td>METABOLIC DISORDERS</td>
<td>MOVEMENT DISORDERS</td>
</tr>
<tr>
<td>MRI, particularly T2-weighted and FLAIR images</td>
<td>MRI with and without gadolinium</td>
</tr>
<tr>
<td>Diffusion-weighted images may be useful in distinguishing acute and chronic changes</td>
<td>PET</td>
</tr>
<tr>
<td>MRS, SPECT, and PET may be useful in certain disorders</td>
<td>DaTscan (SPECT scan using iodine-123 as the contrast agent for detecting dopamine transporters in suspected parkinsonian syndromes)</td>
</tr>
<tr>
<td>HYDROCEPHALUS</td>
<td></td>
</tr>
<tr>
<td>Ultrasound (in infants), CT with and without contrast, or MR with and without gadolinium for diagnosis of communicating hydrocephalus</td>
<td></td>
</tr>
<tr>
<td>MR with and without gadolinium for diagnosis of noncommunicating hydrocephalus</td>
<td></td>
</tr>
<tr>
<td>Ultrasound (in infants) or CT to follow ventricular size in response to treatment</td>
<td></td>
</tr>
</tbody>
</table>

CTA, computed tomographic angiography; FLAIR, fluid-attenuated inversion recovery; ICP, intracranial pressure; MRA, magnetic resonance angiography; MRS, magnetic resonance spectroscopy; MRV, magnetic resonance venography; PET, positron emission tomography; SPECT, single-photon emission computed tomography; TCD, transcranial Doppler ultrasonography.

is displayed in the form of a spectrum. Many metabolites can be detected, the most common of which are N-acetylaspartate, creatine and phosphocreatine, choline, myoinositol, and lactate. Changes in the spectral pattern of a given area can yield clues to the underlying pathology, making MRS useful in the diagnosis of inborn errors of metabolism, as well as the preoperative and postoperative assessment of intracranial tumors. MRS can also detect areas of cortical dysplasia in patients with epilepsy, because these areas have low N-acetylaspartate:creatine ratios. Finally, MRS may be useful in detecting hypoxic–ischemic injury in newborns in the first day of life, because the lactate peak enlarges and the N-acetylaspartate peak diminishes before MRI sequences become abnormal.

Catheter angiography is the gold standard for diagnosing vascular disorders of the CNS, such as arteriovenous malformations, aneurysms, arterial occlusions, and vasculitis. A 4-vessel study is accomplished by introducing a catheter into the femoral artery and then injecting contrast media into each of the internal carotid and vertebral arteries. Because catheter angiography is invasive and requires general anesthesia, it is typically reserved for treatment planning or for cases in which noninvasive imaging results are not diagnostic.

Positron emission tomography (PET) provides unique information on brain metabolism and perfusion by measuring blood flow, oxygen uptake, and/or glucose consumption. PET is an expensive technique that is most often used in the context of epilepsy surgery programs. PET-MRI is an emerging clinical modality of particular use in epilepsy surgery evaluation and neuro-oncology. Pediatric PET-MRI is largely used in the research setting, although at least one children’s hospital in the United States has begun pioneering its clinical use. **Single-photon emission CT** using 99mTc hexamethylpropyleneamine oxime is a sensitive and inexpensive technique to study regional cerebral blood flow. Single-photon emission CT is particularly useful in assessing vasculitis, herpes encephalitis, dysplastic cortex, and recurrent brain tumors. Positron emission tomography MRI is only available in a few pediatric centers in the United States; it provides better resolution and tissue definition than single-photon emission CT.
Electroencephalography
An electroencephalogram (EEG) provides a continuous recording of electrical activity between reference electrodes placed on the scalp. Although the genesis of the electrical activity is not certain, it likely originates from pre- and post-synaptic potentials in the dendrites of cortical neurons. Even with amplification of the electrical activity, not all potentials are recorded because there is a filtering effect of the scalp, muscles, bone, vessels, and subarachnoid fluid. EEG waves are classified according to their frequency as delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-20 Hz). These waves are altered by many factors, including age, level of alertness, eye closure, drugs, and disease states.

The normal waking EEG is characterized by the posterior dominant rhythm—a sinusoidal, 8- to 12-Hz rhythm that is most prominent over the occipital region in a state of relaxed wakefulness with the eyes closed. This rhythm first becomes apparent at 3-4 mo of age, and most children have achieved the adult frequency of 8-12 Hz by age 12 yr.

Normal sleep is divided into 3 stages of non-rapid eye movement sleep—denoted N1, N2, and N3—each with a rapid eye movement stage. N1 corresponds to drowsiness, and N3 represents deep, restorative, slow-wave sleep. Rapid eye movement sleep is rarely captured during a routine EEG but may be seen on an overnight recording. The American Electroencephalography Society guidelines and technical standards state that “sleep recordings should be obtained whenever possible”; however, if a patient has sleep deprivation, not sleep during the recording.

As with eyelid movements, slowing can be either focal or diffuse. Focal slowing should raise a concern for an underlying functional or structural abnormality, such as an infarct, hematomatous, or tumor. Diffuse slowing is the hallmark of encephalopathy and is usually secondary to a widespread disease process or toxic–metabolic insult.

Long-term video EEG monitoring provides a precise characterization of seizure types, which allows specific medical or surgical management. It facilitates the accurate differentiation of epileptic versus focal events that mimic epilepsy, including recurrent psychogenic seizures-like a attacks. Long-term EEG monitoring can also be useful during medication adjustments.

Evoked Potentials
An evoked potential is an electrical signal recorded from the CNS following the presentation of a spatio-temporal visual, auditory, or somatosensory stimulus. Stimulation of the visual system by a flash or patterned stimulus, such as a black-and-white checkerboard, produces visual evoked potentials (VEPs), which are recorded over the occiput and averaged into a computer. Abnormal VEPs can result from lesions to the visual pathway anywhere from the retina to the visual cortex. Many demyelinating and neurodegenerative diseases, such as Tay-Sachs, Krabbe, or Pelizaeus-Merzbacher disease, or neuronal ceroid lipofuscinoses show characteristic VEP abnormalities. Flash VEPs can also be helpful in evaluating infants with suspected seizures. However, it is necessary to mean that the infant will have a functional vision.

Brainstem auditory evoked responses (BAERs) provide an objective measurement of hearing and are particularly useful in neonates and in children who have failed, or are uncooperative with, audiometric testing. BAERs are abnormal in many neuromuscular disorders of childhood and are an important tool in evaluating patients with suspected tumors of the cerebellopontine angle. BAERs can be helpful in assessing brainstem function in comatose patients, because the waveforms are unaffected by drugs or by the level of consciousness; however, they are not accurate in predicting neurologic recovery and outcome.

Somatosensory evoked potentials (SSEPs) are obtained by stimulating a peripheral nerve (peroneal, median) and then recording the electrical response over the cervical region and contralateral parietal somatosensory cortex. SSEPs detect the functional integrity of the dorsal column–medial lemniscal system and are useful in monitoring spinal cord function during orthopedic procedures, including hyperventilation and photic stimulation.

SSEPs are abnormal in many neurodegenerative disorders and are the most accurate evoked potential in the assessment of neurologic outcome following a severe CNS insult.

Specific and General Genetic and Metabolic Testing
Children with intellectual disability or developmental delay are often evaluated with metabolic and/or genetic testing. Newborn screening study results should be rechecked before new studies are done. Specific accompanying features of the child’s history and physical examination may point to a particular disorder or group of disorders, allowing for specific genetic or metabolic testing or for chromosomal studies to be fruitful. Whole-exome sequencing is often used in situations in which these studies are negative or there are no distinguishing features of the child’s history or physical examination that point to a particular subgroup of diagnoses.

Bibliography is available at Expert Consult.